255 research outputs found

    Origin of dissolved versus particulate organic carbon in tropical coastal ecosystems: a comparison of stable isotope data from different systems

    Full text link
    Dissolved organic carbon (DOC) is typically the dominant form of organic matter in estuaries and coastal waters, but relatively few studies have measured its stable isotope composition or compared its origin with that of the particulate organic carbon (POC) pool.We report here on measurements of the concentrations and stable isotope composition of both DOC and POC from a range of tropical coastal ecosystems: the Tana estuary and delta (northern Kenya), the mangrove-fringed Mtoni estuary (Tanzania), Ras Dege mangrove creek (Tanzania), the Betsiboka estuary (Madagascar), the Mekong delta (Vietnam), and mangrove creeks in the Ca Mau province (Vietnam). Large variations in the _13C signatures of both DOC and POC were observed, and the difference in _13C signatures between both pools (_13CDOC − _13CPOC) ranged from -7.6 to + 9.0 per mil. Thus, the origin of POC and DOC can exhibit surprisingly large differences within and between different coastal systems. In the Tana estuary and delta, C4-derived material from the catchment area was more important in the POC pool than in the DOC pool. In the Betsiboka estuary (Madagascar), where C4 vegetation also covers a large extent of the catchment area, the opposite pattern was observed in the freshwater and low-salinity zone of the estuary, but at salinities >15, DOC became more 13C-depleted than POC. In the Mekong delta and mangrove creeks in the Ca Mau province (Vietnam), where the catchment is dominated by C3 vegetation, DOC was consistently depleted versus POC by _1.5-2.5 per mil. In the two Tanzanian mangrove systems, the large variations in _13C of both pools were largely consistent with a mixing process between marine- and mangrove-derived organic matter, with significant internal inputs of mangrove-derived DOC along the salinity gradient in Mtoni. Differences in _13C signatures between both pools (which ranged up to 9 per mil) could be explained by the different end-member signatures and pool sizes. In summary, our results show an often unexpected difference in the origin of dissolved and particulate organic carbon in tropical coastal ecosystems, and stress the need for a more refined characterization of organic matter (in particular DOC) to improve our understanding of carbon cycling in these systems

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    Evaluating methane inventories by isotopic analysis in the London region

    Get PDF
    A thorough understanding of methane sources is necessary to accomplish methane reduction targets. Urban environments, where a large variety of methane sources coexist, are one of the most complex areas to investigate. Methane sources are characterised by specific δ13C-CH4 signatures, so high precision stable isotope analysis of atmospheric methane can be used to give a better understanding of urban sources and their partition in a source mix. Diurnal measurements of methane and carbon dioxide mole fraction, and isotopic values at King’s College London, enabled assessment of the isotopic signal of the source mix in central London. Surveys with a mobile measurement system in the London region were also carried out for detection of methane plumes at near ground level, in order to evaluate the spatial allocation of sources suggested by the inventories. The measured isotopic signal in central London (−45.7 ±0.5‰) was more than 2‰ higher than the isotopic value calculated using emission inventories and updated δ13C-CH4 signatures. Besides, during the mobile surveys, many gas leaks were identified that are not included in the inventories. This suggests that a revision of the source distribution given by the emission inventories is needed

    Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    Get PDF
    Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood.Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments.Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing herbivore diversity can stabilize ecosystem flux rates in the face of perturbations

    Складові компоненти мовної особистості в контексті міжкультурної комунікації

    Get PDF
    Стаття присвячена аналізу складових компонентів мовної особистості в контексті міжкультурної комунікації, їх взаємодії та функціонуванню з точки зору прагматичної спрямованості мовленнєвого впливу. Детально розглядаються три рівні структури мовної особистості (структурно-мовний, лінгвокогнітивний ті мотиваційний) із визначенням специфіки їхніх складових компонентів.Статья посвящена анализу составляющих компонентов языковой личности в контексте межкультурной коммуникаций, их взаимодействию и функционированию с точки зрения прагматической направленности речевого воздействия. Детально рассматриваются три уровня структуры языковой личности (структурно-языковой, лингвокогнитивный и мотивационный) с последующим определением специфики их составляющих компонентов.The article is dedicated to the linguistic personality constituent components' analysis in terms of cross-cultural communication, their interaction and functioning with the speech influence pragmatic orientation taken into consideration. The three levels of the linguistic personality (that is, structural linguistic, lingo cognitive and motivation ones) are under analysis with the following their constituent components specificity determinatio

    Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability

    Get PDF
    This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data. Clear differences in profiles were observed between sediment type, location and season. Notably, very steep pH gradients exist within the surface sediments (10–20 mm), where decreases greater than 0.5 pH units were observed. Steep gradients were particularly apparent in fine cohesive sediments, less so in permeable sandier matrices. We hypothesise that the gradients are likely caused by aerobic organic matter respiration close to the sediment–water interface or oxidation of reduced species at the base of the oxic zone (NH4+, Mn2+, Fe2+, S−). Statistical analysis suggests the variability in the depth of the pH minima is controlled spatially by the oxygen penetration depth, and seasonally by the input and remineralisation of deposited organic phytodetritus. Below the pH minima the observed pH remained consistently low to maximum electrode penetration (ca. 60 mm), indicating an absence of sub-oxic processes generating H+ or balanced removal processes within this layer. Thus, a climatology of sediment surface porewater pH is provided against which to examine biogeochemical processes. This enhances our understanding of benthic pH processes, particularly in the context of human impacts, seabed integrity, and future climate changes, providing vital information for modelling benthic response under future climate scenarios

    Modeling denitrification in aquatic sediments

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 93 (2009): 159-178, doi:10.1007/s10533-008-9270-z.Sediment denitrification is a major pathway of fixed nitrogen loss from aquatic systems. Due to technical difficulties in measuring this process and its spatial and temporal variability, estimates of local, regional and global denitrification have to rely on a combination of measurements and models. Here we review approaches to describing denitrification in aquatic sediments, ranging from mechanistic diagenetic models to empirical parameterizations of nitrogen fluxes across the sediment-water interface. We also present a compilation of denitrification measurements and ancillary data for different aquatic systems, ranging from freshwater to marine. Based on this data compilation we reevaluate published parameterizations of denitrification. We recommend that future models of denitrification use (1) a combination of mechanistic diagenetic models and measurements where bottom waters are temporally hypoxic or anoxic, and (2) the much simpler correlations between denitrification and sediment oxygen consumption for oxic bottom waters. For our data set, inclusion of bottom water oxygen and nitrate concentrations in a multivariate regression did not improve the statistical fit.Financial support for AEG to work on the manuscript came from NSF NSF-DEB-0423565. KF, DB and DDT acknowledge support from NOAA CHRP grant NA07NOS4780191
    corecore